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Abstract 
This work presents the results of a joint 
frequentist and bayesian approach to build 
Bayes estimators for the missing shape and 
scale parameters of the Exponentiated 
Inverse Rayleigh Distribution (EIRD). The 
shape and scale parameters of an EIRD were 
determined by applying the Bayes theorem 
to the posterior distribution. This 
distribution was tested under various loss 
functions, including entropy, linex, and scale 

invariant squared error, and was found to 
work with both conjugate and non-
conjugate prior distributions. The shape and 
scale parameters' posterior distributions are 
difficult, so we used a Lindley approximation 
to get the ones we care about. Estimates for 
the size and shape parameters were 
obtained using the loss function, assuming 
that the scale and 
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1 Introduction 

Rayleigh distribution originated from a two 
parameters Weibull distribution and it’s a 
suitable model for mdistribution (IRD) was 
introduced by [1] for modeling realibility and 
survival data sets. [2] studied some properties of 
IRD and [3] discussed the properties and 
maximum likelihood estimation of the scale 
parameter of IRD. The variance and the higher 
order moments of this distribution do not exist. 
The reliability sampling plans of IRD was carried 
out by [4]. The probability density function (PDF) 
of the one parameter IRD The closed-form 

expressions for the mean, harmonic mean, 
geometric mean, mode and the median of IRD 
was discussed by [5]. The estimation of the 
parameter σ using both different classical and 
Bayesian estimation methods was carried out by 
[5] and [6]. In recent years, attention has been 
shifted to the generalization of probability 
distribution theory, most applied in reliability 
estimation [7, 8, 9, 10]. The transmuted Rayleigh 
distribution and transmuted generalized Rayleigh 
distribution were developed by [11, 12] 
respectively. [13] and [14] proposed a Beta 
Inverse Rayleigh. The exponentiated inverse 

shape parameters are unknown and independent. Also the Bayes estimate for the simulated 
datasets and real life datasets were obtained. The Bayes estimates obtained under different loss 
functions are close to the true parameter value of the shape and scale parameters. The estimators 
are then compared in terms of their Mean Square Error (MSE) using R programming language. 
We deduce that the MSE reduces as the sample size (n) increases.  



Applied GIS                                       ISSN: 1832-5505  

                                                                                                                                               Vol-10 Issue-01 Jan 2022  

 

Rayleigh distribution (EIRD) also known as a life 
time distribution was introduced by [15]. This 

distribution can be adopted for reliability 
estimation 

and statistical quality control. The probability density function (pdf) of EIRD is written as 

 

 
 

 
 

 

 
Fig. 1. PDF of an EIRD 

Fig. 2. CDF of an EIRD 

 

  

Fig. 3. Reliability graph of an EIRD Fig. 4. Hazard graph of an EIRD 
 

 

the Entropy Loss Function, Linex Loss 
Function and Scale Invariant Squared 
Error Loss Function given that the scale 
and shape parameters are unknown. In 
Sections 2, we discuss the estimation of 
the shape and scale parameters. In 
Section 3, numerical results are presented 

for both the simulated and real-life data 
on survival times of patients with breast 
cancer, and Section 4 contains the 
conclusion. 
 
 

2 Materials and Methods 

2.1 Maximum likelihood function 

Let x = (x1, x2, . . . , xn) be a random variable drawn from EIRD with size n. The likelihood function 
for the given random sample can be expressed as 
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n n 

x−3e− (( x ) 1 − e−( x ) 

 

∏ ∑  σ 2 ∏ ( 
σ 2 

)α−1 

 

 

Table 1. Estimates of the parameters of the four methods MLE, LLF, ELF and 
SISLF with their MLEs 

 

Table 2. Estimates of the parameters of the four methods MLE, LLF, ELF and 
SISLF with their MLEs 

 

 

 

2.2 Application to Coating weight by chemical method on Tcs and 

L(x/σ, α) = 2nσnαn (2.1) 
i=1 i=1 
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Bcs. 

In this section, the EIRD is applied to two (2) real data sets which were gotten from [15]. The first 
data set was a 72 observations on coating weight by chemical method on top center side (TCS) and 
the second data set was 72 observations on coating weight by chemical method on bottom center 
side (BCS). 

For the Tcs data 
36.8 47.2 35.6 36.7 55.8 58.7 42.3 37.8 55.4 45.2 31.8 48.3 45.3 48.5 52.8 45.4 49.8 48.2 54.5 50.1 
48.4 44.2 41.2 47.2 39.1 40.7 40.3 41.2 30.4 42.8 38.9 34.0 33.2 56.8 52.6 40.5 40.6 45.8 58.9 28.7 
37.3 36.8 40.2 58.2 59.2 42.8 46.3 61.2 58.4 38.5 34.2 41.3 42.6 43.1 42.3 54.2 44.9 42.8 47.1 38.9 
42.8 29.4 32.7 40.1 33.2 31.6 36.2 33.6 32.9 34.5 33.7 39.9 

For the Bcs 
45.5 37.5 44.3 43.6 47.1 52.9 53.6 42.9 40.6 34.1 42.6 38.9 35.2 40.8 41.8 49.3 38.2 48.2 44.0 30.4 
62.3 39.5 39.6 32.8 48.1 56.0 47.9 39.6 44.0 30.9 36.6 40.2 50.3 34.3 54.6 52.7 44.2 38.9 31.5 39.6 
43.9 41.8 42.8 33.8 40.2 41.8 39.6 24.8 28.9 54.1 44.1 52.7 51.5 54.2 53.1 43.9 40.8 55.9 57.2 58.9 
40.8 44.7 52.4 43.8 44.2 40.7 44.0 46.3 41.9 43.6 44.9 53.6 The data is summarized in Table 3. 

 
Table 3. Estimates of the parameters of the four methods MLE, LLF, ELF and 
SISLF with their MLEs for the real life datasets 

 

Conclusion 
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In this work, we consider the classical 
method and Bayesian method under 
different loss functions such as Entropy 
Loss Function, Linex Loss Function and 
Scale Invariant Squared Error Loss 
Function. We employed the Bayesian 
techniques to obtain the posterior 
estimates of an EIRD using both 
conjugate and non-conjugate prior 
distribution under different loss 
functions and adopted the maximum 
likelihood approach to estimate the 
two parameter of interest. Fig. 1. 
shows that the PDF of the EIRD 
distribution at varying parameter 
values which shows that the 
distribution is positively skewed and 
the Fig. 2. is the CDF which shows the 
increasing pattern as other 
distributions. Fig. 3. shows the 
reliability graph which proves that the 
distribution can be used in lifetime 
studies since the graph tends to 
decrease as the time increases. Fig. 4. 
shows the hazard graph which shows 
the upside down bath-tub curve 
shape. 
Table 1 and 2 shows the posterior estimates 
with MSE under different loss functions for 
the simulated datasets. Table 3, shows 
the posterior estimate on the real life 
dataset (coating weight by chemical 
method on top center side (TCS) and 
bottom center side (BCS))for different 
prior distribution under different loss 
functions 
Based on the results displayed in Tables 1 
and 2, we observed that all the posterior 
estimates for both shape and scale 
parameters for the simulated datasets 
are close to the true values of 
parameters of an EIRD. Also, we 
discovered the methods are consistent 
since the values of MSE decrease as 

sample size increases. It can be 
observed that the Bayesian estimates 
for both scale and shape parameters 
under the Bayesian techniques 
perform better than that of the 
classical techniques . The results 
obtained under the loss function ELF 
were quite more efficient than others 
loss functions because of its smallest 
MSE. 
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